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K-NN classifier: lazy classifier

Model

Late 
payments, L

Spending 
ratio, R Bankruptcy

3 Very low No
1 Very low No

4 Low No
2 Low No
0 Normal No
1 Medium No
1 High No
6 Very low Yes
7 Very low Yes
6 Low Yes
3 Normal Yes
2 Medium Yes
4 High Yes
2 High Yes

L R B

2 Low ?

L: #late payments / year
R: expenses / income ratio

Training set

New sample

Classify



K-NN classification algorithm
Input:

set T of N labeled records, 
K, 
instance A to classify

Classification: 

for i from 1 to N
compute distance d (A,Ti) 

sort T asc by d (A,Ti) into Tsorted

from top K records in Tsorted

extract class labels L1…K

Output: 

return combination (L1…K)



K-NN: round 2

I. Distance/similarity between data records
II. How many neighbors: choice of K
III. Combining neighbor votes
IV. How many features (dimensions)
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How do we define proximity?



Numeric proximity (similarity or distance) 
between data records

• Combination of proximity measures for each 
attribute

• Each attribute is considered a separate and 
independent (in this approach) dimension of the 
data

• First step: translate all fields into numeric variables, 
to be able to compute similarity (distance) across 
each dimension



Types of attributes

1. True measures (continuous)

2. Ranks (ordinal)

3. Categorical (nominal)

The distances are 
Increasingly harder 
to convert into a 
numeric scale

How do we define the proximity measure for a single 
attribute of each type?



1. True measures

• True measures measure the value from a meaningful 
“0” point. The ratio between values is meaningful, 
and the distance is just an absolute difference of 
values.

• Examples: age, weight, length



2. Ordinal (Ranks)
• These values have an order, but the distance 

between different ranks is not defined



quality attribute of a product : {poor, fair, OK, good, wonderful}

Order is important, but exact difference between values is undefined

Solution: map the values of the attribute to successive integers

{poor=0, fair=1, OK=2, good=3, wonderful=4}

Dissimilarity (distance)

d(p,q) = |p – q| / (max_d – min_d)

e.g. d(wonderful, fair) = |4-1| / (4-0) = .75

Similarity

s(p,q) = 1 – d(p,q) e.g. s(wonderful, fair) = .25

2. Ordinal (Ranks)
Example 1:

Not always 
meaningful, 
but the best 
we can do



2. Ordinal (Ranks)

Top 10 swimmers - 50m Fly
1 KONOVALOV, Nikita 88 RUS 22.70
2 GOVOROV, Andriy 92 UKR 22.70
3 LEVEAUX, Amaury 85 FRA 22.74
4 CZERNIAK, Konrad 89 POL 22.77 
5 KOROTYSHKIN, Evgeny 83 RUS 22.88
6 EIBLER, Steffen 87 GER 22.89
7 FESIKOV, Sergey 89 RUS 22.96
8 HEERSBRANDT, Francois 89 BEL 22.98
9 MUNOZ PEREZ, Rafael 88 ESP 23.07
10 JAMES, Antony 89 GBR 23.14

Example 2:

Distance between athlet 3 and 1 (0.04 sec) is  not the same as 
distance between 10 and 8 (0.16). It is better to use the numeric 
attributes (actual time) which contributed to this ranking



3. Categorical (nominal) attributes

• Each value is one of a set of unordered categories. 
We can only tell that X≠Y, but not how much X is 
greater than Y.

• Example: ice cream pistachio is not equal to butter 
pecan, but we cannot tell which one is greater and 
which one is closer to black cherry ice cream 

• The general approach: if equal then similarity = 1, if 
not equal then similarity = 0



Attribute 
type

Distance 
(dissimilarity)

Similarity

True 
measures

d=|x-y| s=-d,  s=1/(1+d), 
s=1-(d-min_d)/(max_d-min_d)

Ordinal d=|x-y|/(n-1)
(values mapped to 
integers 0 to n-1 
where n is the 
number of values)

s=1-d

Nominal 
(Categorical)

d= 0 if x=y
d=1 if x≠y

s=1 if x=y
s=0 if x≠y

Summary on proximity measures for a 
single attribute



Combining measures of separate 
attributes into a proximity measure 

between a pair of data records

• Hundreds of similarity measures were proposed

• We will look at:

– Euclidean distance

– Jaccard index

– Tanimoto coefficient

– Cosine similarity

– Pearson similarity



Euclidean distance. 
All attributes are numeric

x2

D

B

x1

C

For N dimensions:

A

It is hard to visualize points in more than 3 dimensions, but for 
computer it is not a problem

Similarity:

s(A,B)=1/(1+d(A,B))



Matching coefficients. 
All attributes are binary

M11: number of attributes with value 1 in both X and Y
M10: number of attributes with value 1 in X and 0 in Y
M01: number of attributes with value 0 in X but 1 in Y
M00: number of attributes with value 0 in both X and Y

Y Y 

X M11 M10

X M01 M00



Matching coefficients and Jaccard index

Y Y 

X M11 M10

X M01 M00

Simple Matching Coefficient
SMC  =  number of matches / number of all attributes (dimensions)

=  (M11 + M00) / (M01 + M10 + M11 + M00)

Jaccard Index 
J  = number of M11 matches / number of not-both-zero attributes values

= (M11) / (M01 + M10 + M11) 

Jaccard index is used for 
asymmetric binary attributes, 

where only value 1 is important



SMC and Jaccard example

x=( 1 0 0 0 0 0 0 0 0 0      )

y=( 0 0 0 0 0 0 1 0 0 1      )

SMC= (M11 + M00) / (M01 + M10 + M11 + M00) = (0+7)/10=0.7

J= M11 / (M01 + M10 + M11) = (0)/3=0.0

The choice is application-dependent 



SMC and Jaccard example

x=( 1 0 0 0 0 0 0 0 0 0      )

y=( 0 0 0 0 0 0 1 0 0 1      )

SMC= (M11 + M00) / (M01 + M10 + M11 + M00) = (0+7)/10=0.7

J= M11 / (M01 + M10 + M11) = (0)/3=0.0

The choice is application-dependent 
Which measure to choose for:

Comparing documents by common words?
Comparing transactions by common items?
Comparing students by knowledge of 10 topics?



Tanimoto similarity coefficient

• Jaccard index is defined as the number 
of attributes with value 1 in both 
records, divided by the total number 
of records for which there is at least 
one 1 value:

• Tanimoto coefficient is similar but is 
defined in terms of set operations: it is 
an intersection over union of all 
attribute values without attributes for 
which both binary values are False(0):

Y Y 

X M11 M10

X M01 M00

J= M11 / (M01 + M10 + M11) 

T= M11 / (M-1 + M1- - M11) 

M11 ← intersection

X
Y

M11

(M01 + M10 + M11)=(M-1 + M1- - M11) ← union The formulas show that Jaccard and 
Tanimoto are exactly the same!



Cosine similarity
• Sometimes it makes more sense to consider two records 

closely associated because of similarities in the way the 
attributes within each record are related



Cat or bear classifier 

Tail

Body



Cat or bear? 
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Big bear

Big cat
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Tail
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Body

Big bear

Big cat



Cat or bear? 
Consider angle between vectors

Tail

Little bear

Body

Big bear

Big cat



Cat or bear? 

Canadian Lynx



Cat or bear? 
Consider angle between vectors

Tail

Little bear

Body

Big bear

Big cat



Cosine similarity
• Sometimes it makes more sense to compare records based on 

the way the fields within each record are related

• Sardines should be closer to cod and tuna, while kittens closer 
to cougars and lions, but if we use the Euclidean distance of 
body-part lengths, the sardine is closer to a kitten than it is to a 
catfish

• Solution: use a different geometric interpretation. Instead of 
thinking of X and Y as points in space, think of them as vectors 
and measure the angle between them

• In this context, a vector is the line segment connecting the origin 
of a coordinate system to the point described by the vector 
values



Cosine similarity

The angle between vectors provides a 
measure of  similarity that is not influenced 
by differences in magnitude between the 
two things being compared



Cosine similarity

Cosine of the angle between two vectors is
1 when they are collinear (maximum similarity)
and 
0 when they are orthogonal



Cosine similarity

x2

D

B

x1

C

A

s(A,B)=cos( A, B ) =  (A ∙ B) / ||A||∙||B|| 

Dot-product of 
vectors



Cosine similarity

x2

D

B

x1

C

A

s(A,B)=cos( A, B ) =  (A ∙ B) / ||A||∙||B|| 

Absolute length of 
vectors A and B



Cosine similarity

x2

D

B

x1

C

A

s(A,B)=cos( A, B ) =  (A ∙ B) / ||A||∙||B|| 

A ∙ B=1*2+1*2=4

A=(1,1)

B=(2,2) 

||A ||=sqrt(1+1)

||B ||=sqrt(4+4)

||A ||.||B||=sqrt(16)

s(A,B)=cos( A, B )=1



Cosine similarity

x2

D

B

x1

C

A

s(A,D)=cos( A, D ) =  (A ∙ D) / ||A||∙||D|| 

A ∙ D=0+1=1

A=(1,1)

D=(0,1) 

||A ||=sqrt(2)

||D ||=1

||A ||.||D||=sqrt(2)

s(A,D)=cos( A, D )

=sqrt(1/2)≈0.7



Cosine similarity

x2

D

B

x1

C

A

s(C,D)=cos( C, D ) =  (C ∙ D) / ||C||∙||D|| 

C ∙ D=0

C=(2,0)

D=(0,1) 

s(C,D)=cos( C, D )=0



Cosine Similarity for document vectors

w1 w2 w3 w4 w5 w6

x=( 1 0 0 0 0 0    )

y=( 0 0 0 1 2 0    )

z=( 0 0 0 4 8 0    )

Cosine between x and y is 0 (dot-product is 0). These 
documents are not similar.

Cosine between y and z is 1: though the number of times 
each word occurs in y and z is different, these documents are 
about the same topic



Pearson correlation

• A correlation is a number between -1 and +1 that measures 
the degree of association between two variables (in our case 
– between 2 data objects for which we recorded n
observations)

• A positive value for the correlation implies a positive 
association (the values across all observations vary in the 
same direction)

• A negative value for the correlation implies a negative or 
inverse association – which makes 2 data objects dissimilar

• A value close to 0 implies that there is no correlation between 
two data objects



Pearson correlation formula

• In numerator we see  a covariance - a measure of the joint 
variability of 2 data objects across n observations

• We normalize it by dividing by a variance inside each separate 
data object



y2=2

Pearson correlation: example 1

values

dimensions

r = 2/(√2*√2) = 1

X Y xi - μx yi – μy Cov(X,Y)

d1 2 1 -1 -1 1

d2 3 2 0 0 0

d3 4 3 1 1 1

μ 3 2 Var(x) = 
√2

Var(y) = √2 2

Are all (3) observations for objects X and Y change in the same direction?

x1=2

y1=1

x2=3

x3=4

y3=3 Full positive correlation 
(X and Y are very similar)

Note that absolute values across each 
dimension do not play any role – only 
direction is important

d1 d2 d3



y2=2

Pearson correlation: example 2

values

dimensions

r = -2/(√2*√2) = -1

X Y xi - μx yi – μy Cov(X,Y)

d1 2 3 -1 1 -1

d2 3 2 0 0 0

d3 4 1 1 -1 -1

μ 3 2 Var(x) = 
√2

Var(y) = √2 -2

Are all (3) observations for objects X and Y change in the same direction?

x1=2

y1=3 x2=3

x3=4

y3=1

Full negative correlation 
(X and Y are least similar – quite 
opposite)

d1 d2 d3



y2=3

Pearson correlation: example 3

values

dimensions

r = 1/(√2*√2) = 1/2

X Y xi - μx yi – μy Cov(X,Y)

d1 2 1 -1 -1 1

d2 3 3 0 1 0

d3 4 2 1 0 0

μ 3 2 Var(x) = 
√2

Var(y) = √2 1

Are all (3) observations for objects X and Y change in the same direction?

x1=2

y1=1

x2=3

x3=4

y3=2

d1 d2 d3

Partly correlated objects (less similar)



Relationship between Pearson 
correlation and cosine similarity

• By subtracting mean from each 
value, we effectively just 
transposing vectors to center 
them around mean

• Pearson correlation is nothing 
else but a cosine between two 
vectors after they are centered 
around the mean for each 
dimension

• Pearson correlation is a cosine 
of centered vectors



Combining Similarities of different types

• Sometimes attributes are of many different types, but 
an overall similarity/dissimilarity is needed.

• For each type of attributes k, compute a similarity sk

• Then average, 

• Similar formula for dissimilarity (distance)



Scaling attributes for consistency

• X- in yards, Y in cm

• X- number of children, Y – income

Difference in 1 dollar = difference in 1 child?

Scaling: map all variables to a common range 0-1



Example: need to scale 

50K 60K 70K 80K 90K 100
K

110
K

120
K

130
K

140
K

150
K

160
K

170
K

180
K

190
K

200
K

31

30

29

28

27

26

25

Age

Salary 

Distance 6
Distance 
20,000



50K 60K 70K 80K 90K 100
K

110
K

120
K

130
K

140
K

150
K

160
K

170
K

180
K

190
K

200
K

31

30

29

28

27

26

25

Age

Salary 

Distance 6
Distance 
20,000

Example: scaling



50K 70K 90K 110
K

130
K

150
K

170
K

200
K

31

30

29

28

27

26

25

Age

Salary 

Distance 
1.00

Distance 
0.13

For Age: ai=(vi-25)/(31-25)

For Salary: ai=(vi-50,000)/(200,00-50,00)

1.00

0.83

0.67

0.50

0.33

0.17

0.00

0.00 0.13 0.40 0.80 1.00

All values are 
between 0.00 
and 1.00

Example: result



Scaling vectors

• Vector normalization – changes the vector values so that 
the length of the vector is 1, only the direction is 
compared

• X={Debt=200,000 equity=100,000}

• Y={Debt=2,000 equity=1,000}

Emphasizes internal relation between different attributes 
of each record



Encode expert knowledge with weights

• Changes in one variable should not be more significant 
only because of differences in magnitudes of values

• After scaling to get rid of bias due to units, use weights 
to introduce bias based on expert knowledge of 
context:
– 2 families with the same income and number of children 

are more similar than 2 families living in the same 
neighborhood

– Number of children is more important than the number of 
credit cards



Data-dependent proximity

Two Apples 
among Apples

S. Aryal, K. M. Ting, G. Haffari and T. Washio, "Mp-Dissimilarity: A Data Dependent 
Dissimilarity Measure," ICDM, 2014

are less 
similar 
than

Two Apples 
among Pears



K-NN: round 2

I. Distance/similarity between data records
II. How many neighbors: choice of K
III. Combining neighbor votes
IV. How many features (dimensions)



How many neighbors?
application-dependent

• Vary K from 1 to N

• Use cross-validation to find optimal value of K



Leave-one-out cross validation: K=1
L R B

3 0.2 No
1 0.3 No
4 0.5 No
2 0.7 No
0 1 No
1 1.2 No
1 1.7 No
6 0.2 Yes
7 0.3 Yes
6 0.7 Yes
3 1.1 Yes
2 1.5 Yes
4 1.7 Yes
2 1.9 Yes

L: #late payments / year
R: expenses / income ratio

II. Choosing optimal value of K



Leave-one-out cross validation: K=1
L R B

3 0.2 No
1 0.3 No
4 0.5 No
2 0.7 No
0 1 No
1 1.2 No
1 1.7 No
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7 0.3 Yes
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3 1.1 Yes
2 1.5 Yes
4 1.7 Yes
2 1.9 Yes

L: #late payments / year
R: expenses / income ratio

II. Choosing optimal value of K
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R: expenses / income ratio
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4 1.7 Yes
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3 0.2 No
1 0.3 No
4 0.5 No
2 0.7 No
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3 0.2 No
1 0.3 No
4 0.5 No
2 0.7 No
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6 0.2 Yes
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Leave-one-out cross validation: K=1
L R B

3 0.2 No
1 0.3 No
4 0.5 No
2 0.7 No
0 1 No
1 1.2 No
1 1.7 No
6 0.2 Yes
7 0.3 Yes
6 0.7 Yes
3 1.1 Yes
2 1.5 Yes
4 1.7 Yes
2 1.9 Yes For K=1:

Error rate 3/14

II. Choosing optimal value of K



Leave-one-out cross validation: K=3
L R B

3 0.2 No
1 0.3 No
4 0.5 No
2 0.7 No
0 1 No
1 1.2 No
1 1.7 No
6 0.2 Yes
7 0.3 Yes
6 0.7 Yes
3 1.1 Yes
2 1.5 Yes
4 1.7 Yes
2 1.9 Yes

L: #late payments / year
R: expenses / income ratio

II. Choosing optimal value of K



Leave-one-out cross validation: K=3
L R B

3 0.2 No
1 0.3 No
4 0.5 No
2 0.7 No
0 1 No
1 1.2 No
1 1.7 No
6 0.2 Yes
7 0.3 Yes
6 0.7 Yes
3 1.1 Yes
2 1.5 Yes
4 1.7 Yes
2 1.9 Yes

L: #late payments / year
R: expenses / income ratio

II. Choosing optimal value of K
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1 0.3 No
4 0.5 No
2 0.7 No
0 1 No
1 1.2 No
1 1.7 No
6 0.2 Yes
7 0.3 Yes
6 0.7 Yes
3 1.1 Yes
2 1.5 Yes
4 1.7 Yes
2 1.9 Yes

L: #late payments / year
R: expenses / income ratio

II. Choosing optimal value of K
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1 1.2 No
1 1.7 No
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4 1.7 Yes
2 1.9 Yes

L: #late payments / year
R: expenses / income ratio

II. Choosing optimal value of K
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4 1.7 Yes
2 1.9 Yes
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1 1.7 No
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3 1.1 Yes
2 1.5 Yes
4 1.7 Yes
2 1.9 Yes

L: #late payments / year
R: expenses / income ratio

II. Choosing optimal value of K
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3 0.2 No
1 0.3 No
4 0.5 No
2 0.7 No
0 1 No
1 1.2 No
1 1.7 No
6 0.2 Yes
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6 0.7 Yes
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2 1.5 Yes
4 1.7 Yes
2 1.9 Yes

L: #late payments / year
R: expenses / income ratio
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3 0.2 No
1 0.3 No
4 0.5 No
2 0.7 No
0 1 No
1 1.2 No
1 1.7 No
6 0.2 Yes
7 0.3 Yes
6 0.7 Yes
3 1.1 Yes
2 1.5 Yes
4 1.7 Yes
2 1.9 Yes

L: #late payments / year
R: expenses / income ratio

II. Choosing optimal value of K



Leave-one-out cross validation: K=3
L R B

3 0.2 No
1 0.3 No
4 0.5 No
2 0.7 No
0 1 No
1 1.2 No
1 1.7 No
6 0.2 Yes
7 0.3 Yes
6 0.7 Yes
3 1.1 Yes
2 1.5 Yes
4 1.7 Yes
2 1.9 Yes

L: #late payments / year
R: expenses / income ratio

II. Choosing optimal value of K



Leave-one-out cross validation: K=3
L R B

3 0.2 No
1 0.3 No
4 0.5 No
2 0.7 No
0 1 No
1 1.2 No
1 1.7 No
6 0.2 Yes
7 0.3 Yes
6 0.7 Yes
3 1.1 Yes
2 1.5 Yes
4 1.7 Yes
2 1.9 Yes

L: #late payments / year
R: expenses / income ratio

II. Choosing optimal value of K



Leave-one-out cross validation: K=3
L R B

3 0.2 No
1 0.3 No
4 0.5 No
2 0.7 No
0 1 No
1 1.2 No
1 1.7 No
6 0.2 Yes
7 0.3 Yes
6 0.7 Yes
3 1.1 Yes
2 1.5 Yes
4 1.7 Yes
2 1.9 Yes

L: #late payments / year
R: expenses / income ratio

II. Choosing optimal value of K



Leave-one-out cross validation: K=3
L R B

3 0.2 No
1 0.3 No
4 0.5 No
2 0.7 No
0 1 No
1 1.2 No
1 1.7 No
6 0.2 Yes
7 0.3 Yes
6 0.7 Yes
3 1.1 Yes
2 1.5 Yes
4 1.7 Yes
2 1.9 Yes

L: #late payments / year
R: expenses / income ratio

II. Choosing optimal value of K



Leave-one-out cross validation: K=3
L R B

3 0.2 No
1 0.3 No
4 0.5 No
2 0.7 No
0 1 No
1 1.2 No
1 1.7 No
6 0.2 Yes
7 0.3 Yes
6 0.7 Yes
3 1.1 Yes
2 1.5 Yes
4 1.7 Yes
2 1.9 Yes For K=1:

Error rate 3/14
For K=3:
Error rate 2/14

II. Choosing optimal value of K



Leave-one-out cross validation: 
new error with K=3

L R B
3 0.2 No
1 0.3 No
4 0.5 No
2 0.7 No
0 1 No
1 1.2 No
1 1.7 No
6 0.2 Yes
7 0.3 Yes
6 0.7 Yes
3 1.1 Yes
2 1.5 Yes
4 1.7 Yes
2 1.9 Yes For K=1:

Error rate 3/14
For K=3:
Error rate 2/14

II. Choosing optimal value of K



K-NN: round 2

I. Distance/similarity between data records
II. How many neighbors: choice of K
III. Combining neighbor votes
IV. How many features (dimensions)



Majority voting (democracy)

L: #late payments / year
R: expenses / income ratio

L R

2 0.3

Blue diamond is classified as No ( No bankrupt)



Weighted voting (shareholder democracy)

L R

2 0.3

1/0.5 Yes+1/1.5 No + 1/1.5 No=2 Yes + 1.33 No = Yes!
The closest neighbor outweighs the majority class



K-NN: round 2

I. Distance/similarity between data records
II. How many neighbors: choice of K
III. Combining neighbor votes
IV. How many features (dimensions)



How many dimensions?
• Imagine you have one-dimensional data which can be a straight 

line (the line where the floor and the wall meets) and plot 100 data 
points

• Now let's make this a 2D - a wall. Plot the same 100 points. 

• Moving on, let's imagine a 3D which can be the room that has the 
wall in it. Again plot the 100 points.

• The points become more sparse as we move from a line to a wall 
and to a room. In a high dimensional space the same number of 
points are now separated by an exponentially large distance.

• The prediction in sparse high-dimensional space will be less 
reliable: the distance between points increases exponentially thus 
making predictions on sparse data becomes next to impossible.



The curse of dimensionality: example

Candy size

1 
dimension

?

LikeDon’t like

Predict: Prediction is always reliable

Candy size

C
o

lo
r 

Predict:
Prediction is not reliable: 
need more data points

?

?

2 
dimensions



K-NN algorithm. Summary

• The training set is the model

• Advantages:

– Building a classifier: zero work

– Updating the model with every new record: zero 
work

– Interpretable: we can justify our classification

– Good for predicting numeric values (Regressor)

• Disadvantages:

– The query is computationally expensive!


